Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada.

4/4 B.Tech. FIRST SEMESTER

IT7T4A EMBEDDED SYSTEMS Credits: 4

(Common to CSE/IT/ECM)

Lecture: 4 periods/week Internal assessment: 30 marks
Tutorial: 1 period /week Semester end examination: 70 marks

Objectives:

- To equip the students with the basic concepts of Embedded system(ES) and applications of ES
- To introduce 8051 microcontroller programming concepts and various aspects of embedded system design from Hardware and Software points of view
- To demonstrate tools and methodologies needed for embedded system design.
- To explain RTOS concepts for coding the embedded system software routines and characteristics of latency in real-time systems.

Outcomes:

Students will be able to:

- Differentiate between microprocessor and microcontroller
- Understand the basics of an Embedded system(ES)
- Develop 8051 microcontroller programming
- Understand the concepts of RTOS
- Design and implement simple embedded systems in real time applications.

Syllabus:

UNIT I

Embedded Systems Basics: Introduction to Embedded systems, Examples of embeddedsystems, TypicalHardware,Gates, TimingDiagrams,Memory,Microprocessors,Buses,DirectMemoryAccess, Interrupts, Microprocessor Architecture, Interrupt Basics.

UNIT II

The 8051 Architecture: Introduction, 8051 Micro controller Hardware, Input/output Pin Ports and Circuits, External Memory, Serial data Input/output, Interrupts.

UNIT III

Basic Assembly Language Programming Concepts: The Assembly Language Programming Process, Programming Tools and Techniques, Programming the 8051.

Prasad V. Potluri Siddhartha Institute of Technology, Kanuru, Vijayawada.

UNIT IV

Moving Data: Introduction, Addressing Modes, External Data Moves, Code Memory Read-Only Data Moves, Push and Pop Opcodes, Data Exchanges.

UNIT-V

Applications: Introduction, keyboards, Human Factor, Key Switch Factors, Keyboard Configurations, Displays, Seven-Segment Numeric Display, D/A and A/D Conversions.

UNIT VI

Introduction to Real – Time Operating Systems: Survey of software Architectures: Round Robin, Round Robin with Interrupts, Function Queue Scheduling Architecture, Real Time Operating System Architecture, Selecting an Architecture, Tasks and Task States, Tasks and Data, Semaphores, and Shared Data.

UNIT VII

Basic Design Using a Real-Time Operating System: Message Queues, Mailboxes and Pipes, Timer Functions, Events, Memory Management, Interrupt Routines in an RTOS Environment, Principles, Semaphores and Queues, Hard Real-Time Scheduling Considerations, Saving Memory and Power, An example RTOS like uC-OS (Open Source).

UNIT VIII

Embedded Software Development Tools: Host and Target machines, Linker/Locators for Embedded Software, Getting Embedded Software into the Target System; Debugging Techniques: Testing on Host Machine, Using Laboratory Tools, An Example System.

Text Books:

- 1. An Embedded Software Primer, David E. Simon, Pearson Education.
- 2. The 8051 Microcontroller, Third Edition, Kenneth J.Ayala, Thomson.

Reference Books:

- 1. 8051 Microcontrollers, Satish Shah, Oxford Higher Education.
- 2. Embedded Microcomputer Systems Real Time Interfacing, Jonathan W.Valvano, Cengage Learning.
- 3. Micro Controllers, Ajay V Deshmukhi, TMH.
- 4. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley.
- 5. Microcontrollers, Raj kamal, Pearson Education.